
Numerical Algorithms manuscript No.
(will be inserted by the editor)

A binary powering Schur algorithm for computing primary
matrix roots

Federico Greco · Bruno Iannazzo

Received: date / Accepted: date

Abstract An algorithm for computing primary roots of a nonsingular matrix A is

presented. In particular, it computes the principal root of a real matrix having no

nonpositive real eigenvalues, using real arithmetic. The algorithm is based on the Schur

decomposition of A and has an order of complexity lower than the customary Schur

based algorithm, namely the Smith algorithm.

Keywords matrix pth root · matrix functions · Schur method · binary powering

technique

Mathematics Subject Classification (2000) 65F30 · 15A15

1 Introduction

Let p be a positive integer. A primary pth root of a square matrix A ∈ Cn×n is a

solution of the matrix equation Xp −A = 0 that can be written as a polynomial of A.

If A has ` distinct eigenvalues, say λ1, . . . , λ`, none of which is zero, then A has exactly

p` primary pth roots. They are obtained as

f(A) :=
1

2πi

∮
γ

f(z)(zI −A)−1dz, (1)

where f is any of the p` analytic functions defined on the spectrum of A, denoted by

σ(A) := {λ1, . . . , λ`}, and such that f(z)p = z and γ is a closed contour which encloses

σ(A). The reason why f(A) is a polynomial of A is subtle and it is well explained in

[10].

If A has no nonpositive real eigenvalues then there exists only one primary pth root

whose eigenvalues lie in the sector

Sp = {z ∈ C \ {0} : |arg(z)| < π/p}, (2)

Federico Greco, Bruno Iannazzo
Dipartimento di Matematica e Informatica, Università di Perugia
Via Vanvitelli 1, I-06123 Perugia, Italy
E-mail: {greco,bruno.iannazzo}@dipmat.unipg.it

2

which is called principal pth root.

The main numerical problem is to compute the principal pth root of A, whose

applications arise in finance or in the numerical computation of other matrix functions

[8,9,15]. In particular if A is real and has no nonpositive real eigenvalues, then the

principal pth root is proved to be real [8], and in order to compute it, it is preferable

to have an algorithm which works entirely in real arithmetic.

The reliable algorithms are essentially of two kinds:

1. Algorithms based on matrix iterations;

2. Algorithms based on the Schur normal form.

In the first case, one uses a rational matrix iteration which converges to the principal

pth root of A. This approach is very complicated since the iterations usually do not

depend continuously on the initial data, that is, if a perturbation on some iterate is

introduced then it is potentially amplified by the subsequent steps and could result in

numerical instability. Moreover, in the case p > 2 the convergence properties, also in

the scalar case, are hard to describe.

The first rational iteration used for the square root is the so-called Newton method

Xk+1 = 1
2 (Xk + X−1

k A), which was observed to be unstable by Laasonen [14], but the

instability was first analyzed by Higham [6]. Some stable iterations have been proposed,

the first of them is the Denman and Beavers iteration [2] and many others have followed

[11,17].

The case p > 2 is more complicated. In order to have a general algorithm, some

kind of preprocessing of the matrix A should be done. The first general and stable

algorithm was given by Iannazzo [12] and some others have followed [3,4,13,16]. The

computational cost of these algorithms is O(n3 log2 p) arithmetic operations (ops) and

the storage required is O(n2 log2 p) real numbers.

The algorithms based on some matrix iteration show good numerical stability in

the numerical tests, even if their behavior in the finite arithmetic for any matrix A

is practically unpredictable and a thorough analysis is yet to be developed. Moreover,

these algorithms compute just the principal pth root, and it is not clear if they can

compute any of the primary pth roots of A with the same computational cost.

For the second class of algorithms, in order to compute a solution of Xp − A = 0,

one computes the Schur normal form of A, say Q∗AQ = R, where Q is unitary and R

is upper triangular and then solves the equation Y p −R = 0 and deduces X = QY Q∗.
Since Y is proved to be upper triangular, the equation Y p − R = 0 is solved by a

recursion on the elements of Y [8].

In the important case in which A is real, the real Schur form of A is formed, say

QT AQ = R, where Q is orthogonal and R is quasi-upper triangular, that is real and

block upper triangular with diagonal blocks of size 1 or 2 according as they correspond

to one real or a couple of complex conjugate eigenvalues, respectively. The equation

Y p−R = 0 is solved by a recursion on the blocks of Y which is proved to have the same

block structure as R. This approach works on the idea of the Schur-Parlett recurrence

for computing general matrix functions. The case p = 2 was first developed by Björck

and Hammarling [1] in the complex case and then by Higham [7] in the real case.

Finally, the case p > 2 was worked out by Smith [18].

The method developed by Smith has a cost of O(n3p) ops and requires the storage

of O(n2p) real numbers. If p is composite, say p = q1q2, it is thus convenient to form

first the q1th root and then the q2th root of A. However, if p is prime, the cost of the

method of Smith can be large and that makes the algorithm uneffective.

3

A nice feature of the Smith algorithm is that it has been proved to be backward

stable, thus it is in some sense optimal in finite arithmetic. Moreover, it can compute

any of the primary pth roots of A with the same cost.

We propose a new algorithm based on the Schur normal form of A whose cost

is lowered to O(n2p + n3 log2 p) ops and the storage is lowered to O(np + n2 log2 p)

real numbers. The proposed algorithm combines the advantages of being based on the

Schur form and the low computational cost of the iterations.

The numerical tests show that the new algorithm reach the same numerical accu-

racy as the one of Smith.

The paper is organized as follows. In Section 2 we describe and analyze the proposed

method; in Section 3 we summarize the resulting algorithm; in Section 4 we discuss

how to further reduce the cost of the algorithm; finally, in Section 5 we present some

numerical experiments which confirm the reliability of the algorithm.

2 A Schur method based on the binary powering technique

One of the most used methods for computing the principal pth root, for p positive

integer, of a real matrix A ∈ Rn×n having no nonpositive real eigenvalues has been

proposed by Smith in [18]. Since the principal pth root of such a matrix is proved to

be real, the method is designed to work entirely in real arithmetics.

The idea of the algorithm is to compute the real Schur normal form of A, say

QT AQ = R, where Q is orthogonal and R is real and quasi-upper triangular, namely the

matrix is block σ×σ, block upper triangular and its σ diagonal blocks are real numbers

or 2×2 real matrices corresponding to a couple of complex conjugate eigenvalues. Once

the real Schur form is obtained, one applies the transformation to the equation

Xp = A, (3)

obtaining the new equation

Up = R, (4)

where U = QT XQ. If X is the principal pth root of A then U is the principal pth root

of R as well, moreover, the matrix U is quasi-upper triangular with the same block

structure as R (that follows from the fact that a primary pth root of a matrix A is a

polynomial in A, see also [8]).

From a solution U of (4) one obtains a solution of (3) using X = QUQT , so if U

is chosen to be the principal pth root of R, say U = R1/p then the principal pth root

of A is A1/p = QUQT (recall that U and QUQT have the same eigenvalues).

The key point of the algorithm is the solution of (4) which is done by a clever

recursion, employing the same idea as the methods of Björck and Hammarling [1] and

Higham [6] for the matrix square root.

The recursion of Smith [18,19] is obtained considering the sequence of matrices{
Ṽ (0) = U,

Ṽ (k) = UṼ (k−1) = Uk+1, k = 1, . . . , p− 2,
(5)

having the same quasi-triangular structure as U and R. The diagonal blocks of U are

obtained from the pth roots of the corresponding blocks of R using a simple formula:

4

if Uii is a 1 × 1 block, then Uii is the principal pth root of the scalar Rii; if Uii is a

2× 2 block corresponding to the complex conjugate eigenvalues θ ± iµ, then

Uii = αI +
β

µ
(Rii − θI), (6)

where I is the 2× 2 identity matrix and α + iβ is the principal pth root of θ + iµ. The

upper triangular part of U is obtained, a block column at a time, equating the (i, j)

blocks in equation (5) (more details can be found in [8,18]).

The main drawback of the Smith method is the high cost in terms of arithmetic

operations (ops) and storage for large p, in particular it needs O(n3p) ops and the

storage of O(n2p) real numbers. The most expensive part is the computation of the

elements of the intermediate matrices Ṽ (k) and their storage. The idea of our algorithm

is to use a recursion similar to the one of Smith but with less intermediate matrices

obtaining an algorithm with similar features but less expensive. The proposed recursion

is based on the binary powering decomposition of the integer p, that is

p =

blog2 pc∑
k=0

bk 2k, for a unique choice of b0, . . . , bblog2 pc ∈ {0, 1}, (7)

where bblog2 pc = 1. Observe that bi, for i = 0, . . . , blog2 pc, are the digits in the binary

representation of p.

We define also the sets

c(p) = {k : bk = 1}, c(p)+ = c(p) \ {0}. (8)

The set c(p) has cardinality m + 1, for some nonnegative integer m, while the set

c(p)+ coincides with c(p) if p is even (that is 0 6∈ c(p)) and has cardinality m if p is

odd. Clearly, m + 1 denotes the number of 1s comparing in the binary representation

of p. Let c0, c1, . . . , cm be the sequence obtained by sorting the elements of c(p) by

decreasing order. Note that if m > 0, then

c0 = blog2 pc,
ch = max{k : k < ch−1, bk = 1}, h = 1, . . . , m,

(9)

while if m = 0, then the sequence contains just the term c0 = blog2 pc.
Since Up = R,

R = Up =

blog2 pc∏
k=0

Ubk2k

=

m∏
h=0

U2ch
,

and it is possible to devise a method based on a sequence of c0 + m = O(log2 p)

intermediate matrices from which construct a recursion for computing U .

We obtain the further c0 matrices as follows{
V (0) = U

V (k) = V (k−1) · V (k−1) = U2k

, k = 1, . . . , c0,
(10)

and the latter m matrices as follows{
W (0) = V (c0)

W (h) = W (h−1) · V (ch), h = 1, . . . , m,
(11)

5

where W (m) = R.

The matrices V (k) and W (h) have the same block structure as R, being quasi-upper

triangular. We denote the blocks of V (k) and W (h) by V
(k)
ij and W

(h)
ij , respectively,

where the indices i, j go from 1 to σ, where σ2 is the number of blocks in the partitioning

of R. Each choice of i and j could correspond to a 1 × 1, or to a 1 × 2, or to a 2 × 1,

or to a 2× 2 block, according to the quasi-triangular structure of R.

The idea of the proposed method is to compute, using (10) and (11), the blocks of

U , that is V (0), in the following order: first, compute the diagonal blocks of U , then

compute the upper part of U , V (k) and W (h) a column at a time from the bottom to

the top. During the computation we need the diagonal blocks of Uq for q = 1, . . . , p.

These blocks can be computed with a cost of O(n2p) ops and a storage of O(np) real

numbers.

Relations (10) and (11) can be restated in terms of blocks, for each i, j = 1, . . . , σ

such that i 6 j, for k = 1, . . . , c0, and for h = 1, . . . , m one has

V
(k)
ij =

j∑
ξ=i

V
(k−1)
iξ V

(k−1)
ξj ,

W
(h)
ij =

j∑
ξ=i

W
(h−1)
iξ V

(ch)
ξj ,

(12)

while for i > j the blocks V
(k)
ij and W

(h)
ij are zero for each k.

In order to get useful formulae we isolate the terms containing the indices i and j

in the sum, obtaining

V
(k−1)
ii V

(k−1)
ij + V

(k−1)
ij V

(k−1)
jj = V

(k)
ij −B

(k)
ij , (13)

W
(h−1)
ii V

(ch)
ij + V

(ch)
ij W

(h−1)
jj = W

(h)
ij − C

(h)
ij . (14)

where B
(k)
ij , and C

(h)
ij denote something which is already known when one is computing

the block Uij , in fact, for j > i + 1,

B
(k)
ij =

j−1∑
ξ=i+1

V
(k−1)
iξ V

(k−1)
ξj , C

(h)
ij =

j−1∑
ξ=i+1

W
(h−1)
iξ V

(ch)
ξj ,

and for j = i + 1, B
(k)
ij = C

(h)
ij = 0.

Now we show how to use equations (13) and (14) in order to obtain a single equation

from which recover Uij for each i and j. The construction of such equation is quite

technical and will be done in the rest of the section.

Let A1 = {(0; 1; 0)}, and let

Ak =
⋃

(r;s;t)∈Ak−1

{(r + 2k−1; s; t), (r; s; t + 2k−1)} ∪ {(0; k; 0)}, (15)

for any integer k > 1.

The set Ak contains 2k − 1 triples; it can be easily shown that the following two

properties completely describe Ak:

6

(i) (0; k; 0) ∈ Ak holds;

(ii) If (r; s; t) ∈ Ak, and s > 1, then (r+2s−1; s−1; t) ∈ Ak, and (r; s−1; t+2s−1) ∈ Ak.

Property (i), and (ii) allow us to represent the elements in Ak by a tree. In Figure 1

the tree in the case k = 3 is depicted.

(6; 1; 0)

(4; 2; 0)

::ttttttttt

$$JJJJJJJJJ

(4; 1; 2)

(0; 3; 0)

CC����������������

��7
77

77
77

77
77

77
77

7

(2; 1; 4)

(0; 2; 4)

::ttttttttt

$$JJJJJJJJJ

(0; 1; 6)

Fig. 1 A tree representation of A3

We first explain how the blocks of U can be constructed when p = 2k, then the

general case is described. We recall that the algorithm will be used essentially only if

p is a prime number, the case p = 2k is presented just for the sake of the clarity.

Let us illustrate what happens in the case p = 16 to better understand the case

p = 2k. Observe that for p = 2k one needs only equation (10). Let us suppose that the

diagonal blocks Uq
ii for any q = 0, . . . , 15 have been already computed. It follows from

(13) applied for k = 4 that

V
(4)
ij = V

(3)
ii V

(3)
ij + V

(3)
ij V

(3)
jj + B

(4)
ij .

Note that B
(4)
ij = U0

iiB
(4)
ij U0

jj , and it can be associated with the triple (0; 4; 0) belonging

to the first level in the tree corresponding to A4. Let us consider the term V
(3)
ii V

(3)
ij ,

it follows from (13) applied for k = 3 that

V
(3)
ii V

(3)
ij = U8

ii

(
V

(2)
ii V

(2)
ij + V

(2)
ij V

(2)
jj

)
+ U8

iiB
(3)
ij .

Note that U8
iiB

(3)
ij = U8

iiB
(3)
ij U0

jj , and that it can be associated with the triple (8; 3; 0)

belonging to a part of the second level of the tree corresponding to A4. Clearly, the

7

triple (0; 3; 8) appears when we substitute (13) for k = 3 in V
(3)
ij V

(3)
jj . Recalling that

V
(2)
ii = U4

ii, and that V
(2)
jj = U4

jj , we obtain by making use of (13) applied for k = 2

that

U12
ii V

(2)
ij + U8

iiV
(2)
ij U4

jj = U12
ii

(
V

(1)
ii V

(1)
ij + V

(1)
ij V

(1)
jj

)
+ U12

ii B
(2)
ij

+ U8
ii

(
V

(1)
ii V

(1)
ij + V

(1)
ij V

(1)
jj

)
U4

jj + U8
iiB

(2)
ij U4

jj .

By arguing as above, the two terms U12
ii B

(2)
ij and U8

iiB
(2)
ij U4

jj are associated with the

triples (12; 2; 0), and (8; 2; 4), respectively. The other two triples belonging to the third

level of the tree corresponding to A4 appear, for symmetry, when we simplify V
(3)
ij V

(3)
jj .

Remembering that V
(1)
ii = U2

ii, and that V
(1)
jj = U2

jj , we obtain by making use of (13)

for k = 1 that

U14
ii V

(1)
ij = U15

ii V
(0)
ij + U14

ii V
(0)
ij Ujj + U14

ii B
(1)
ij ,

U12
ii V

(1)
ij U2

jj = U13
ii V

(0)
ij U2

jj + U12
ii V

(0)
ij U3

jj + U12
ii B

(1)
ij U2

jj ,

U10
ii V

(1)
ij U4

jj = U11
ii V

(0)
ij U4

jj + U10
ii V

(0)
ij U5

jj + U10
ii B

(1)
ij U4

jj ,

U8
iiV

(1)
ij U6

jj = U9
iiV

(0)
ij U6

jj + U8
iiV

(0)
ij U7

jj + U8
iiB

(1)
ij U6

jj ,

which make appear the missing terms in A4. In general, it holds the following result.

Lemma 1 If p = 2c0 , for some positive integer c0, then

Rij =

p−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj +
∑

(r;s;t)∈Ac0

Ur
iiB

(s)
ij U t

jj . (16)

Proof The claim is proved by induction on c0. Let us suppose c0 = 1, from (13) applied

for k = 1 it follows that

Rij = V
(1)
ij = V

(0)
ii V

(0)
ij + V

(0)
ij V

(0)
jj + B

(1)
ij .

Since V
(0)
ii = Uii, V

(0)
jj = Ujj , and A1 = {(0; 1; 0)}, the claim trivially follows.

Let us assume the claim for c0 = c > 0, and let us prove it for c0 = c + 1. From

(13) applied for k = c + 1 it follows that

Rij = V
(c+1)
ij = V

(c)
ii V

(c)
ij + V

(c)
ij V

(c)
jj + B

(c+1)
ij .

By making use of inductive hypothesis and observing that V
(c)
ii = U2c

ii , and V
(c)
jj = U2c

jj ,

the above equation can be written as

Rij = U2c

ii

2c−1∑
q=0

Uq
iiV

(0)
ij U2c−1−q

jj +
∑

(r;s;t)∈Ac

Ur
iiB

(s)
ij U t

jj


+

2c−1∑
q=0

Uq
iiV

(0)
ij U2c−1−q

jj +
∑

(r;s;t)∈Ac

Ur
iiB

(s)
ij U t

jj

U2c

jj + B
(c+1)
ij

=

2c−1∑
q=0

(
Uq+2c

ii V
(0)
ij U2c−1−q

jj + Uq
iiV

(0)
ij U2c−1−q+2c

jj

)
+

∑
(r;s;t)∈Ac

(
Ur+2c

ii B
(s)
ij U t

jj + Ur
iiB

(s)
ij U t+2c

jj

)
+ U0

iiB
(c+1)
ij U0

jj .

8

The former term of the last expression can be written as

2c+1−1∑
q=0

Uq
iiV

(0)
ij U2c+1−1−q

jj ,

while the latter term of the last expression can be rearranged as
∑

(r;s;t)∈Ac+1

Ur
iiB

(s)
ij U t

jj

as a consequence of the definition of Ak for k = c + 1. The claim thus follows.

Note that the two sums involved in Rij have p, and 2c0 − 1 = p− 1 terms, respec-

tively.

Lemma 1 provides a basis for an algorithm for the 2kth root of a matrix. We need

the use of the Kronecker notation [10], that is the Kronecker product, the vec operator

which stacks the columns of a matrix in a long vector and the well-know relation

vec(AXB) = (BT ⊗A) vec(X), for A, X, B matrices of suitable sizes.

Using the Kronecker notation and V
(0)
ij = Uij , equation (16) can be rewritten asp−1∑

q=0

(
Up−1−q

jj

)T
⊗ Uq

ii

 vec(Uij) = vec

Rij −
∑

(r;s;t)∈Ac0

Ur
iiB

(s)
ij U t

jj

 , (17)

which is a linear system of size at most 4, whose unknown is vec(Uij), and the matrix

coefficient and the right hand side are known quantities since they involve already

computed blocks. The solution is unique as the matrix coefficient is the transpose of

the one appearing in the Smith algorithm which is proved to be nonsingular [18].

In order to go further to the case in which p is arbitrary, let us illustrate what

happens for p = 23, where m = 3, c0 = 4, c1 = 2, c2 = 1, c3 = 0. By making use of

(14) for k = 3, we have that

W
(3)
ij = W

(2)
ii V

(0)
ij + W

(2)
ij V

(0)
jj + C

(3)
ij = U22

ii V
(0)
ij + W

(2)
ij Ujj + C

(3)
ij ,

where we have used that W
(2)
ii = U2c0+2c1+2c2

ii = U22
ii , and that V

(0)
jj = Ujj . The only

summand which needs to be further reduced is the second one; according to (14), for

k = 2 we have that

W
(2)
ij Ujj = (W

(1)
ii V

(1)
ij + W

(1)
ij V

(1)
jj)Ujj + C

(2)
ij Ujj

= U20
ii V

(1)
ij Ujj + W

(1)
ij U3

jj + C
(2)
ij Ujj ,

where we have used that W
(1)
ii = U2c0+2c1

ii = U20
ii , and V

(1)
jj = U2

jj . Moreover, it

follows from Lemma 1 that

V
(1)
ij =

1∑
q=0

Uq
iiV

(0)
ij U1−q

jj +
∑

(r;s;t)∈A1

Ur
iiB

(s)
ij U t

jj ,

hence,

U20
ii V

(1)
ij Ujj = U20

ii

 1∑
q=0

Uq
iiV

(0)
ij U1−q

jj

Ujj + U20
ii

 ∑
(r;s;t)∈A1

Ur
iiB

(s)
ij U t

jj

Ujj .

9

According to (14), for k = 1, we have that

W
(1)
ij U3

jj = W
(0)
ii V

(2)
ij U3

jj + W
(0)
ij V

(2)
jj U3

jj + C
(1)
ij U3

jj

= U16
ii V

(2)
ij U3

jj + W
(0)
ij U7

jj + C
(1)
ij U3

jj .

Note that W
(0)
ii = U2c0

ii = U16
ii , and that V

(2)
jj = U4

jj . Moreover, from Lemma 1 it

follows that

V
(2)
ij =

3∑
q=0

Uq
iiV

(0)
ij U3−q

jj +
∑

(r;s;t)∈A2

Ur
iiB

(s)
ij U t

jj ,

hence,

U16
ii V

(2)
ij U3

jj = U16
ii

 3∑
q=0

Uq
iiV

(0)
ij U3−q

jj

U3
jj + U16

ii

 ∑
(r;s;t)∈A2

Ur
iiB

(s)
ij U t

jj

U3
jj .

On the other hand,

W
(0)
ij U7

jj = V
(4)
ij U7

jj =

 15∑
q=0

Uq
iiV

(0)
ij U15−q

jj

U7
jj +

 ∑
(r;s;t)∈A4

Ur
iiB

(s)
ij U t

jj

U7
jj ,

by making use of Lemma 1 for c0 = 4, and of (14) for k = 0.

All terms involving V
(0)
ij can be grouped as follows

22∑
q=0

Uq
iiV

(0)
ij U22−q

jj ,

while the remaining terms can be divided into two summands. The first one containing

C
(h)
ij , i, j = 1, . . . , σ, can be written as

3∑
h=1

C
(h)
ij U2ch+1+···+2c3

jj ,

where U2ch+1+···+2c3

jj denotes the identity matrix for h = 3.

The second one referring to the B
(k)
ij ’s, can be written as

∑
h∈c(23)+

U23−2ch−···−2c3

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2c3

jj ,

where c(23)+ is the set {4, 2, 1}, according to definition (8).

Now we give the main result of this section.

10

Theorem 1 Let p =

m∑
h=0

2ch be a positive integer greater than 1 and c(p)+ as in (8).

Then

Rij =

p−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj +

m∑
h=1

C
(h)
ij U2ch+1+···+2cm

jj

+
∑

h∈c(p)+

Up−2ch−···−2cm

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cm

jj ,

(18)

where, for h = m, U2ch+1+···+2cm

jj denotes the identity matrix, for m = 0 the second

summand on the right hand side of (18) is the zero matrix and the third summand on

the right hand side of (18) is the zero matrix when c(p)+ is the empty set.

Proof The claim is done by induction on m. Let us assume m = 0, hence, p = 2c0 , for

some positive integer c0. The claim thus follows from Lemma 1.

Let us assume the claim for m = µ, and let us prove it for m = µ + 1, note that in

this case p =

µ∑
h=0

2ch + 2cµ+1 . Let p′ denote the integer

µ∑
h=0

2ch , thus p = p′ + 2cµ+1 .

It follows from (11) applied for h = µ + 1 that

Rij = W
(µ+1)
ij = W

(µ)
ii V

(cµ+1)
ij + W

(µ)
ij V

(cµ+1)
jj + C

(µ+1)
ij .

Note that W
(µ)
ii = Up′

ii , and that V
(cµ+1)
jj = U2cµ+1

jj . By making use of the induction

hypothesis for W
(µ)
ij ,

Rij = Up′

ii V
(cµ+1)
ij +

(p′−1∑
q=0

Uq
iiV

(0)
ij Up′−1−q

jj +

µ∑
h=1

C
(h)
ij U2ch+1+···+2cµ

jj

+
∑

h∈c(p′)+

Up′−2ch−···−2cµ

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cµ

jj

)
U2cµ+1

jj + C
(µ+1)
ij .

As a consequence of the relation p = p′ + 2cµ+1 , we have that

Rij = Up′

ii V
(cµ+1)
ij +

p′−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj +

µ∑
h=1

C
(h)
ij U2ch+1+···+2cµ+2cµ+1

jj + C
(µ+1)
ij

+
∑

h∈c(p′)+

Up−2ch−···−2cµ−2cµ+1

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cµ+2cµ+1

jj .

As µ + 1 = m, U2cµ+2+···+2cµ+1

jj denotes the identity matrix. Hence, the term C[p] :=∑µ
h=1 C

(h)
ij U2ch+1+···+2cµ+1

jj + C
(µ+1)
ij is equal to the second sum in the right hand

side of equation (18) for m = µ + 1.

In order to complete the proof, we distinguish two cases: cµ+1 = 0 and cµ+1 > 0

which correspond to p odd and p even, respectively.

11

If cµ+1 = 0, then V
(cµ+1)
ij = V

(0)
ij = Uij , and U2cµ+1

jj = Ujj hold, hence,

Rij = Up′

ii V
(0)
ij +

p′−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj + C[p] (19)

+
∑

h∈c(p′)+

Up−2ch−···−2cµ−2cµ+1

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cµ+2cµ+1

jj .

Since p = p′ + 1, the first two summands of the right hand side of (19) can be written

as

p−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj , which corresponds to the first sum in the the right hand side

of equation (18) for m = µ + 1.

Finally, noting that c(p)+ = c(p′)+, the second row in equation (19) corresponds

to the third sum in the the right hand side of equation (18) for m = µ + 1.

The claim thus follows in the case cµ+1 = 0.

Suppose, now, that cµ+1 > 0. Let us compute V
(cµ+1)
ij using Lemma 1 for c = cµ+1.

Hence,

Rij = Up′

ii

(2cµ+1−1∑
q=0

Uq
iiV

(0)
ij U2cµ+1−1−q

jj +
∑

(r;s;t)∈Acµ+1

Ur
iiB

(s)
ij U t

jj

)

+

p′−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj + C[p]

+
∑

h∈c(p′)+

Up−2ch−···−2cµ−2cµ+1

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cµ+2cµ+1

jj .

Since p = p′ + 2cµ+1 ,

Up′

ii

2cµ+1−1∑
q=0

Uq
iiV

(0)
ij U2cµ+1−1−q

jj +

p′−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj =

p−1∑
q=0

Uq
iiV

(0)
ij Up−1−q

jj ,

thus, the first sum in the the right hand side of equation (18) for m = µ + 1 has been

obtained. Moreover,

Up′

ii

∑
(r;s;t)∈Acµ+1

Ur
iiB

(s)
ij U t

jj = Up−2cµ+1

ii

(∑
(r;s;t)∈Acµ+1

Ur
iiB

(s)
ij U t

jj

)
U0

jj

Noting that c(p)+ = c(p′)+ ∪ {µ + 1}, the remaining terms can be written as

∑
h∈c(p)+

Up−2ch−···−2cµ−2cµ+1

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cµ+2cµ+1

jj .

The proof is completed.

12

Note that the first sums involved in Rij according to Theorem 1 has p summands.

The second one has m summands, and the third one has
∑

h∈c(p)+(2ch − 1) terms. In

particular,

m +
∑

h∈c(p)+

(2ch − 1) = p− 1

in both cases cm = 0, and cm > 0.

3 The algorithm

We summarize the algorithm for computing the principal pth root of a real matrix

having no nonpositive real eigenvalues.

Algorithm 1 (Binary powering Schur algorithm for the principal pth root of a real

matrix A)

1. compute a real Schur decomposition A = QRQT , where R is block σ × σ

2. compute b0, . . . , bblog2 pc and c0, . . . , cm in the binary decomposition of p as in (7)

and (9)

3. for j = 1 : σ

4. compute Ujj = R
1/p
jj (using (6) if the size of Ujj is 2)

5. for q = 0 : p− 1 compute D
(q)
j = Uq

jj , end

6. for k = 0 : c0 set V
(k)
jj = U2k

jj , end

7. W
(0)
jj = V

(c0)
jj

8. for h = 1 : m set W
(h)
jj = W

(h−1)
jj V

(ch)
jj , end

9. for i = j − 1 : −1 : 1

10. for k = 1 : c0
11. Bk =

∑j−1
`=i+1 V

(k−1)
iξ V

(k−1)
ξj

12. end

13. for h = 1 : m

14. Ch =
∑j−1

`=i+1 W
(h)
iξ V

(ch)
ξj

15. end

16. solve
∑p−1

q=0 D
(q)
i UijD

(p−q−1)
j = Rij −

∑m
h=1 ChD

(2ch+1+···+2cm)
j

−
∑

h∈c(p)+ D
(p−2ch−···−2cm)
i

[∑
(r;s;t)∈Ach

D
(r)
i BsD

(t)
j

]
D

(2ch+1+···+2cm)
j

with respect to Uij

17. V
(0)
ij = Uij

18. for k = 1 : c0
19. V

(k)
ij = Bk + V

(k−1)
ii V

(k−1)
ij + V

(k−1)
ij V

(k−1)
jj

20. end

21. W
(0)
ij = V

(c0)
ij

22. for h = 1 : m

23. W
(h)
ij = Ch + W

(h−1)
ii V

(ch)
ij + W

(h−1)
ij V

(ch)
jj

24. end

25. end

26. end

27. compute A1/p = QT UQ.

13

In Steps 11, 14 and 16, we assume that a void sum is the zero matrix, while in

Step 16 we assume that given a matrix M , M2ch+1+···+2cm
is the identity matrix for

h = m.

Let us analyze the computational cost of Algorithm 1. We can assume that σ =

O(n), c0 = O(log2 p) and m = O(log2 p). Step 5 requires the computation of p powers

of s blocks of size at most 2, the cost is O(np) ops. Steps 6–8 are obtained with no

more cost. Steps 10–12 require c0 sums from i + 1 to j − 1 for each i < j − 1, the

resulting cost is O(n3 log2 p) ops, the same cost is required for Steps 13–15. Forming

the coefficients and solving the equation at Step 16 requires O(n2p) ops, since the sum

on the right hand side contains no more than 2 log2 p terms. Finally, the cost of Steps

18–20 and 22–24 is O(n2 log2 p).

In summary the cost of the algorithm is O(n2p+n3 log2 p) ops which asymptotically

favorably compares to the Smith method whose cost is O(n3p) ops. Algorithm 1 requires

less operations also for small p or n and this leads to a faster computation as we will

show in Section 5. The cost could be further lowered as suggested in Section 4.

Consider now the cost in memory. The main expenses are due: to the storage of

V (k), W (h) which are O(log2 p) n×n matrices for a total of O(n2 log2 p) real numbers;

to the storage of the block diagonal of Uq, namely, the blocks D
(q)
j , where j = 1, . . . , σ

and q = 0, . . . , p− 1 for a total of O(np) real numbers.

In summary the algorithm requires the storage of O(np + n2 log2 p) real numbers.

Algorithm 1 can be slightly modified to work with the complex Schur form as well,

in that case one gets the principal pth root of a complex matrix.

More generally the algorithm can be used to compute any primary pth root of a

nonsingular matrix A, by choosing for each eigenvalue the desired pth root at Step 4,

with the restriction that the same branch of the pth root function must be chosen for

repeated eigenvalues.

If two different branches of the pth root are chosen for the same eigenvalue appear-

ing in two different blocks, then the linear matrix equation at Step 18 admits no unique

solution, and Algorithm 1 fails. However, in that case the resulting pth root would be

nonprimary.

4 Possible further improvements

Algorithm 1 has a computational cost which is O(n2p + n3 log2 p) ops and needs the

storage of O(np + n2 log2 p) real numbers. The linear dependence on p is bothering

since the algorithms for the matrix pth root based on matrix iterations depend only on

the logarithm of p. It is possible to reduce further the computational cost of Algorithm

1.

The storage of O(np) real numbers is due to the need of all the powers of Uii, say

Uq
ii, for i = 1, . . . , σ and q = 1, . . . , p.

The computational cost of O(n2p) ops is due to the solution of the matrix equations

p−1∑
q=0

Uq
iiUijU

p−1−q
jj = Rij −

m∑
h=1

C
(h)
ij U2ch+1+···+2cm

jj (20)

−
∑

h∈c(p)+

Up−2ch−···−2cm

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cm

jj ,

14

with respect to Uij , for each i and j.

We will explain how to reduce these costs for fixed i and j. First, we compute and

store λk for any eigenvalue λ of U , and for

k = 2, 4, . . . , 2c0 ,

k = p− 2ch − · · · − 2cm , h = 1, . . . , m,

k = 2ch+1 + · · ·+ 2cm , h = 1, . . . , m− 1,

for a total amount of O(log2 p) values of k.

Then, observe that if Rii is a scalar µi, then Uii = µ
1/p
i =: λi, thus, Uk

ii = λk
i ; if

Rii is a 2 × 2 real matrix corresponding to the couple of complex eigenvalues θ ± iµ,

then its principal pth root Uii is obtained from the principal pth root of the scalar

θ + iµ that is α + iβ by formula (6). In a similar manner if α(k) + iβ(k) := (α + iβ)k,

then it is easy to see that

Uk
ii = α(k)I +

β(k)

µ
(Rii − θI). (21)

Now, we can proceed in removing the linear term in p in the asymptotic costs.

First, we explain how to construct the matrix coefficient

Mij :=

p−1∑
q=0

(
Up−q−1

jj

)T
⊗ Uq

ii

with O(log2 p) ops.

Let λi = θi + iµi be one of the two eigenvalues of Uii and let λq
i = α

(q)
i + iβ

(q)
i ,

for q = 1, . . . , p− 1, be the corresponding eigenvalue of Uq
ii, then using (21) the matrix

coefficient becomes

Mij =

p−1∑
q=0

α
(p−q−1)
j α

(q)
i

 I +

p−1∑
q=0

β
(p−q−1)
j α

(q)
i

 (Rjj − θjI)T ⊗ I

µj

+

p−1∑
q=0

α
(p−q−1)
j β

(q)
i

 I ⊗ (Rii − θiI)

µi
+

p−1∑
q=0

β
(p−q−1)
j β

(q)
i

 (Rjj − θjI)T ⊗ (Rii − θiI)

µiµj
,

where, for λi 6= λj ,

p−1∑
q=0

α
(p−q−1)
j α

(q)
i =

1

2

(
Re

(
λp

i − λp
j

λi − λj

)
+ Re

(
λp

i − λ
p
j

λi − λj

))
,

p−1∑
q=0

β
(p−q−1)
j α

(q)
i =

1

2

(
Im

(
λp

i − λp
j

λi − λj

)
+ Im

(
λp

i − λ
p
j

λi − λj

))
,

p−1∑
q=0

α
(p−q−1)
j β

(q)
i =

1

2

(
Im

(
λp

i − λp
j

λi − λj

)
− Im

(
λp

i − λ
p
j

λi − λj

))
,

p−1∑
q=0

β
(p−q−1)
j β

(q)
i =

1

2

(
Re

(
λp

i − λp
j

λi − λj

)
− Re

(
λp

i − λ
p
j

λi − λj

))
,

15

while for λi = λj it holds that

(
λp

i −λp
j

λi−λj

)
= pλp−1

i .

Thus, for computing Mij one needs just the pth power of the eigenvalues of A,

which have been already computed, and then performing a fixed number of arithmetic

operations.

The second summand on the right hand side of (20) is a sum of m = O(log2 p)

terms. It can be computed with O(log2 p) ops, since λ2ch+1+···+2cm

j and, in view of

formula (21), U2ch+1+···+2cm

jj are known for each h = 1, . . . , m.

Finally, we discuss how to compute in O(log2
2 p) the last summand on right hand

side of equation (20), that is,

∑
h∈c(p)+

Up−2ch−···−2cm

ii

 ∑
(r;s;t)∈Ach

Ur
iiB

(s)
ij U t

jj

U2ch+1+···+2cm

jj . (22)

The cardinality of c(p)+ is O(log2 p), so, in order to obtain a total cost of O(log2
2 p) ops

we need to compute the sum
∑

(r;s;t)∈Ach
Ur

iiB
(s)
ij U t

jj in O(log2 p) ops and the pre-

multiplication by Up−2ch−···−2cm

ii and the post-multiplication by U2ch+1+···+2cm

jj in

O(1) ops. The latter two tasks follow from the fact that we already know λp−2ch−···−2cm

i

and λ2ch+1+···+2cm

j and from the use of (21).

To conclude, we rewrite
∑

(r;s;t)∈Ach
Ur

iiB
(s)
ij U t

jj in the equivalent form

ch∑
s=1

(∑
r,t

(r,s,t)∈Ach

(U t
jj)

T ⊗ Ur
ii

)
vec(B

(s)
ij), (23)

where the matrix
∑

(U t
jj)

T ⊗ Ur
ii is computed by a trick similar to the one used for

Mij , by using only the known values of λk
i and λk

j .

For instance for A3 (compare Figure 1) one must compute the matrices

(U6
jj)

T ⊗ I + (U4
jj)

T ⊗ U2
ii + (U2

jj)
T ⊗ U4

ii + I ⊗ U2
ii,

(U4
jj)

T ⊗ I + I ⊗ U4
ii.

If the matrices are 1× 1, i.e. Uii = λi, Ujj = λj and λi 6= λj , then the computation is

reduced to
p/2−1∑
q=1

λ
2(p−q−1)
j λ2q

i =
λp

i − λp
j

λ2
i − λ2

j

and λ4
j + λ4

i .

A drawback of this approach is that it is based on the simplification

p−1∑
q=0

λq
i λp−q−1

j =
λp

i − λp
j

λi − λj
,

computing the right hand side requires a lower computational cost, but is less numer-

ically stable.

An open problem is the possibility to rearrange these ideas in a way such that the

resulting algorithm is stable.

16

5 Numerical experiments

The analysis of the cost of Algorithm 1 of Section 3 both in terms of arithmetic op-

erations and storage shows that it is asymptotically less expensive than the method

proposed by Smith. We show by some numerical tests that in practice Algorithm 1 is

faster than the one of Smith also for moderate values of p, moreover, the two algorithms

reach the same numerical accuracy. For small p such as 2 or 3 the new algorithm does

not give any advantage with respect to the one of Smith, on the contrary the latter in

most cases is a bit faster in terms of CPU time.

The tests are performed on Matlab 6, with unit roundoff 2−53 ≈ 1.1 × 10−16,

where for the Smith method the implementation rootpm_real of Higham’s Matrix

Function Toolbox [5] is used and for the new algorithm the implementation can be

found at [20].

We compare the performance of the two algorithms on some test matrices. In

particular the CPU time required for the execution of the two algorithms is computed

and the accuracy is estimated in terms of the quantity

ρA(X̃) :=
‖A− X̃p‖

‖X̃‖
∥∥∥∑p−1

i=0 (X̃p−1−i)T ⊗ X̃i
∥∥∥ ,

where X̃ is the computed pth root of A and ‖·‖ is any matrix norm (in our tests we used

the Frobenius norm denoted by ‖·‖F). In [8], the quantity ρA is proved to be a measure

of accuracy more realistic than the norm of the relative residual, say ‖X̃p−A‖/‖A‖. To

better describe the numerical properties of the methods we also compute the quantity

β(U) = ‖U‖p
2/‖R‖2, where U is the computed root of the (quasi) triangular matrix

R from the Schur decomposition of A, this quantity has been introduced in [19] as a

measure of stability.

The results are summarized in Table 1, where n is the size of the matrices and

“time” is the CPU time (in seconds) computed by Matlab. If not otherwise stated we

always compute the principal pth root.

Test 1 We consider the quasi upper triangular matrix

A =


1 1 1 1

0 2 1 1

0 0 1 −1

0 0 1 1

 ,

and compute its principal pth root for some values of p. Since the difference between

Smith’s algorithm and Algorithm 1 is the recursion used to compute the pth root of a

(quasi) triangular matrix, the test is suitable to compare the accuracy and the CPU

time of the two algorithms.

Test 2 We consider a 8 × 8 random stochastic matrix having no nonpositive real

eigenvalues, which may be assumed to be the transition matrix relative to a period of

one year in a Markov model [8,9]. If one needs the transition matrix for one day, then

a 365th root of A is required. Observe that 365 = 73 · 5 so it is enough to compute

the 73th root followed by the 5th root. The average speedup of computing the 73th

root of A with Algorithm 1 with respect to the one of Smith is 9, while the residual

ρA is essentially the same. For large p, the speedup increases further, for instance, if

one computes the 521th root of A, the speedup is 60. The value of β(U) is moderate

and it is the same for both algorithms.

17

Test 3 ([19]) We consider the matrix

A =


1.0000 −1.0000 −1.0000 −1.000

0 1.3000 −1.0000 −1.0000

0 0 1.7000 −1.000

0 0 0 2.0000

 ,

and compute its non principal 8th root

X =


1.0000 6.7778 17.091 36.469

0 −1.0333 −5.2548 −17.707

0 0 1.0686 7.1970

0 0 0 −1.0905

 ,

for which β is large. Also in that case the two algorithms give the same numerical

results.

Test 4 We consider the 10×10 Frank matrix, from Matlab gallery function, a matrix

with ill-conditioned eigenvalues and for which the value of β and the condition number

of the matrix roots are rather large.

Test n p Smith Algorithm 1

β(U) ρA(X̃) time β(U) ρA(X̃) time
1 4 11 1.06 2.78 · 10−17 < 0.02 1.06 1.98 · 10−17 < 0.02

4 101 1.06 5.21 · 10−17 0.58 1.06 5.21 · 10−17 0.05
4 1001 1.06 4.84 · 10−17 43 1.06 4.84 · 10−17 0.34

2 8 73 60.6 5.34 · 10−16 0.91 60.6 5.36 · 10−16 0.094
8 521 61.0 6.02 · 10−16 40 61.0 5.98 · 10−16 0.70

3 4 8 6.56 · 1012 6.56 · 10−19 < 0.02 6.56 · 1012 8.34 · 10−19 < 0.02
4 10 11 6.18 · 1032 4.16 · 10−20 0.30 6.18 · 1032 4.67 · 10−20 0.062

Table 1 Comparison between Smith’s algorithm and Algorithm 1 of Section 3 for some test
matrices.

Acknowledgments

We would like to thank Prof. N. J. Higham and the anonymous referees for their helpful

comments which improved the presentation.

References

1. Å. Björck and S. Hammarling. A Schur method for the square root of a matrix. Linear
Algebra Appl., 52/53:127–140, 1983.

2. E. D. Denman and A. N. Beavers, Jr. The matrix sign function and computations in
systems. Appl. Math. Comput., 2(1):63–94, 1976.

3. C.-H. Guo. On Newton’s method and Halley’s method for the principal pth root of a
matrix. Linear Algebra Appl. to appear.

18

4. C.-H. Guo and N. J. Higham. A Schur–Newton method for the matrix pth root and its
inverse. SIAM J. Matrix Anal. Appl., 28(3):788–804, 2006.

5. N. J. Higham. The Matrix Function Toolbox. http://www.ma.man.ac.uk/~higham/
mctoolbox (Retrieved on November 3, 2009).

6. N. J. Higham. Newton’s method for the matrix square root. Math. Comp., 46(174):537–
549, 1986.

7. N. J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl.,
88/89:405–430, 1987.

8. N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008.

9. N. J. Higham and L. Lin. On pth roots of stochastic matrices. MIMS EPrint 2009.21,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, Mar.
2009.

10. R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1994. Corrected reprint of the 1991 original.

11. B. Iannazzo. A note on computing the matrix square root. Calcolo, 40(4):273–283, 2003.
12. B. Iannazzo. On the Newton method for the matrix pth root. SIAM J. Matrix Anal.

Appl., 28(2):503–523, 2006.
13. B. Iannazzo. A family of rational iterations and its application to the computation of the

matrix pth root. SIAM J. Matrix Anal. Appl., 30(4):1445–1462, 2008.
14. P. Laasonen. On the iterative solution of the matrix equation AX2 − I = 0. Math. Tables

Aids Comput., 12:109–116, 1958.
15. B. Laszkiewicz and K. Ziȩtak. Algorithms for the matrix sector function. Electron. Trans.

Numer. Anal. To appear.
16. B. Laszkiewicz and K. Ziȩtak. A Padé family of iterations for the matrix sector function

and the matrix pth root. Numer. Linear Alg. Appl. DOI: 10.1002/nla.656.
17. B. Meini. The matrix square root from a new functional perspective: theoretical results

and computational issues. SIAM J. Matrix Anal. Appl., 26(2):362–376, 2004/05.
18. M. I. Smith. A Schur algorithm for computing matrix pth roots. SIAM J. Matrix Anal.

Appl., 24(4):971–989, 2003.
19. M. I. Smith. Numerical Computation of Matrix Functions. PhD thesis, University of

Manchester, Manchester, England, September 2002.
20. http:\\bezout.dm.unipi.it\software (Retrieved on November 3, 2009).

